高并发分布式系统中生成全局唯一Id汇总

这个功能是做分布式系统都会遇到的问题,简单记录一下

点击查看,我的Github实现源码(Snowflake方式),目前已投入在生产中使用当中,每日ID生产数在亿级别以上

其他方式,比如UUID方式,点击查看我的Github实现2源码

问题背景

数据在分片时,典型的是分库分表,就有一个全局ID生成的问题。

单纯的生成全局ID并不是什么难题,但是生成的ID通常要满足分片的一些要求:

  1. 不能有单点故障。
  2. 以时间为序,或者ID里包含时间。这样一是可以少一个索引,二是冷热数据容易分离。
  3. 可以控制ShardingId。比如某一个用户的文章要放在同一个分片内,这样查询效率高,修改也容易。
  4. 不要太长,最好64bit。使用long比较好操作,如果是96bit,那就要各种移位相当的不方便,还有可能有些组件不能支持这么大的ID。

1. Twitter Snowflake

twitter在把存储系统从MySQL迁移到Cassandra的过程中由于Cassandra没有顺序ID生成机制,于是自己开发了一套全局唯一ID生成服务:Snowflake。
1 41位的时间序列(精确到毫秒,41位的长度可以使用69年)
2 10位的机器标识(10位的长度最多支持部署1024个节点) 
3 12位的计数顺序号(12位的计数顺序号支持每个节点每毫秒产生4096个ID序号) 最高位是符号位,始终为0。
优点:

  1. 高性能,低延迟;
  2. 独立的应用;按时间有序。

缺点:

  1. 需要独立的开发和部署。

原理


java 实现代码

package com.topone.util.basic.idworker;

import java.text.SimpleDateFormat;

/**
 * 全局唯一的ID 工厂 使用的是 Twitter-Snowflake 算法 可以参考
 * http://yuanhsh.iteye.com/blog/2209696 经过测试 在4个线程 同事不间断生产 1000W主键的时候
 * 性能和准确性都能得到保障 每秒能产生26W+的唯一主键 workerId值为1~1023之间
 * 
 * @author Minbo
 */
public class IdWorker {

	final static SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
	private final long workerId;
	private final static long twepoch = 1361753741828L;
	private long sequence = 0L;
	private final static long workerIdBits = 10L;
	public final long maxWorkerId = -1L ^ -1L << workerIdBits;
	private final static long sequenceBits = 12L;

	private final long workerIdShift = sequenceBits;
	private final static long timestampLeftShift = sequenceBits + workerIdBits;
	public final long sequenceMask = -1L ^ -1L << sequenceBits;

	private long lastTimestamp = -1L;

	public IdWorker(final long workerId) {
		super();
		if (workerId > this.maxWorkerId || workerId < 0) {
			throw new IllegalArgumentException(
					String.format("worker Id can't be greater than %d or less than 0", this.maxWorkerId));
		}
		this.workerId = workerId;
	}

	public synchronized long nextId() {
		long timestamp = this.timeGen();
		if (this.lastTimestamp == timestamp) {
			this.sequence = (this.sequence + 1) & this.sequenceMask;
			if (this.sequence == 0) {
				// System.out.println("###########" + sequenceMask);
				timestamp = this.tilNextMillis(this.lastTimestamp);
			}
		} else {
			this.sequence = 0;
		}
		if (timestamp < this.lastTimestamp) {
			try {
				throw new Exception(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds",
						this.lastTimestamp - timestamp));
			} catch (Exception e) {
				e.printStackTrace();
			}
		}

		this.lastTimestamp = timestamp;
		long nextId = ((timestamp - twepoch << timestampLeftShift)) | (this.workerId << this.workerIdShift)
				| (this.sequence);
		return nextId;
	}

	private long tilNextMillis(final long lastTimestamp) {
		long timestamp = this.timeGen();
		while (timestamp <= lastTimestamp) {
			timestamp = this.timeGen();
		}
		return timestamp;
	}

	private long timeGen() {
		return System.currentTimeMillis();
	}
}

2. Flicker的解决方案

因为MySQL本身支持auto_increment操作,很自然地,我们会想到借助这个特性来实现这个功能。
Flicker在解决全局ID生成方案里就采用了MySQL自增长ID的机制(auto_increment + replace into + MyISAM)。一个生成64位ID方案具体就是这样的: 
先创建单独的数据库(eg:ticket),然后创建一个表:

1

2

3

4

5

6

CREATE TABLE Tickets64 (

id bigint(20) unsigned NOT NULL auto_increment,

stub char(1) NOT NULL default '',

PRIMARY KEY (id),

UNIQUE KEY stub (stub)

) ENGINE=MyISAM

当我们插入记录后,执行SELECT * from Tickets64,查询结果就是这样的:

+-------------------+------+
| id | stub |
+-------------------+------+
| 72157623227190423 | a |
+-------------------+------+
在我们的应用端需要做下面这两个操作,在一个事务会话里提交:

1

2

REPLACE INTO Tickets64 (stub) VALUES ('a');

SELECT LAST_INSERT_ID();

这样我们就能拿到不断增长且不重复的ID了。 
到上面为止,我们只是在单台数据库上生成ID,从高可用角度考虑,接下来就要解决单点故障问题:Flicker启用了两台数据库服务器来生成ID,通过区分auto_increment的起始值和步长来生成奇偶数的ID。

1

2

3

4

5

6

7

TicketServer1:

auto-increment-increment = 2

auto-increment-offset = 1

 

TicketServer2:

auto-increment-increment = 2

auto-increment-offset = 2

最后,在客户端只需要通过轮询方式取ID就可以了。

优点:充分借助数据库的自增ID机制,提供高可靠性,生成的ID有序。
缺点:占用两个独立的MySQL实例,有些浪费资源,成本较高。

3. UUID

UUID生成的是length=32的16进制格式的字符串,如果回退为byte数组共16个byte元素,即UUID是一个128bit长的数字,
一般用16进制表示。
算法的核心思想是结合机器的网卡、当地时间、一个随即数来生成UUID。
从理论上讲,如果一台机器每秒产生10000000个GUID,则可以保证(概率意义上)3240年不重复
优点:
(1)本地生成ID,不需要进行远程调用,时延低
(2)扩展性好,基本可以认为没有性能上限
缺点:
(1)无法保证趋势递增
(2)uuid过长,往往用字符串表示,作为主键建立索引查询效率低,常见优化方案为“转化为两个uint64整数存储”或者“折半存储”(折半后不能保证唯一性)

4. 基于redis的分布式ID生成器

首先,要知道redis的EVAL,EVALSHA命令:
原理

利用redis的lua脚本执行功能,在每个节点上通过lua脚本生成唯一ID。 
生成的ID是64位的:

使用41 bit来存放时间,精确到毫秒,可以使用41年。
使用12 bit来存放逻辑分片ID,最大分片ID是4095
使用10 bit来存放自增长ID,意味着每个节点,每毫秒最多可以生成1024个ID
比如GTM时间 Fri Mar 13 10:00:00 CST 2015 ,它的距1970年的毫秒数是 1426212000000,假定分片ID是53,自增长序列是4,则生成的ID是:

5981966696448054276 = 1426212000000 << 22 + 53 << 10 + 41
redis提供了TIME命令,可以取得redis服务器上的秒数和微秒数。因些lua脚本返回的是一个四元组。

second, microSecond, partition, seq
客户端要自己处理,生成最终ID。

((second * 1000 + microSecond / 1000) << (12 + 10)) + (shardId << 10) + seq;

5. MongoDB文档(Document)全局唯一ID

为了考虑分布式,“_id”要求不同的机器都能用全局唯一的同种方法方便的生成它。因此不能使用自增主键(需要多台服务器进行同步,既费时又费力),
因此选用了生成ObjectId对象的方法。

ObjectId使用12字节的存储空间,其生成方式如下:

|0|1|2|3|4|5|6 |7|8|9|10|11|

|时间戳 |机器ID|PID|计数器 |

前四个字节时间戳是从标准纪元开始的时间戳,单位为秒,有如下特性:

 1 时间戳与后边5个字节一块,保证秒级别的唯一性;
 2 保证插入顺序大致按时间排序;
 3 隐含了文档创建时间;
 4 时间戳的实际值并不重要,不需要对服务器之间的时间进行同步(因为加上机器ID和进程ID已保证此值唯一,唯一性是ObjectId的最终诉求)。

机器ID是服务器主机标识,通常是机器主机名的散列值。

同一台机器上可以运行多个mongod实例,因此也需要加入进程标识符PID。

前9个字节保证了同一秒钟不同机器不同进程产生的ObjectId的唯一性。后三个字节是一个自动增加的计数器(一个mongod进程需要一个全局的计数器),保证同一秒的ObjectId是唯一的。同一秒钟最多允许每个进程拥有(256^3 = 16777216)个不同的ObjectId。

总结一下:

时间戳保证秒级唯一,机器ID保证设计时考虑分布式,避免时钟同步,PID保证同一台服务器运行多个mongod实例时的唯一性,最后的计数器保证同一秒内的唯一性(选用几个字节既要考虑存储的经济性,也要考虑并发性能的上限)。

"_id"既可以在服务器端生成也可以在客户端生成,在客户端生成可以降低服务器端的压力。

参考文章

  1. https://www.cnblogs.com/baiwa/p/5318432.html
  2. http://yuanhsh.iteye.com/blog/2209696

其他资料

1. 我使用的开源分布式ID生成服务

我的专栏

 

 

-------------------------------

-------------------------------

 

我的CSDN主页

关于我(个人域名)

我的开源项目集Github

 

期望和大家一起学习,一起成长,共勉,O(∩_∩)O谢谢

欢迎交流问题,可加个人QQ 469580884,

或者,加我的群号 751925591,一起探讨交流问题

不讲虚的,只做实干家

Talk is cheap,show me the code

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页