架构思维成长系列教程(九)- 个性化推荐引擎架构设计

背景

个性化推荐引擎,被广泛使用在电商网站、网络广告、资讯网站中。本文以电商网站的使用场景为例,给大家介绍个性化推荐引擎的架构设计。

内容

个性化推荐的作用

在综合性的电商网站上,商品的数量通常在数十万以上,个性化推荐是帮助顾客在最短的时间内找到想要的商品。还有一种情况是,顾客在购物过程中并没有很明确的购物意图,只是逛逛,看到喜欢的就买,这个时候个性化推荐就能够根据顾客的浏览行为,进行有针对性的商品推荐,帮助顾客挖掘他的购买需求。

个性化推荐,能够帮助电商网站,提升顾客体验、提升销售业绩,通过个性化推荐,可以在顾客即将达到某个购买周期时,给顾客提醒,提升人文关怀。

  • 比如,通过个性化推荐引擎的算法,可以在顾客的大米、油盐即将使用完的时候,给顾客提醒信息,让顾客通过“一键购”的便捷方式再次购买商品,有效提升老顾客的复购率。

个性化推荐,能够优化网站展示商品内容,提升销售、提升毛利、提高长尾销售、促进跨品类购买等。经过统计发现,使用了个性化推荐以后,能够提升顾客下单率 2 倍以上,提升订单转化率 20%以上。

如何搭建个性化推荐引擎

个性化推荐引擎应用闭环

如上图所示,这是个性化推荐引擎和应用闭环。新一代的推荐引擎是基于用户画像的,当前被广泛使用在各大电商网站的推荐引擎中。

老一代推荐引擎是如何做的?

老一代的推荐引擎是基于商品属性关联的。以亚马逊网站为代表,这跟商品的品类是有关系的,最初亚马逊是以卖书为主的,书的主要属性是书目分类、作者、题材等,例如,当顾客购买了狄更斯的作品时,可以推荐作者其他的作品给顾客,一般情况下是有效的。

但是,在品类繁多的百货类商品的购物环境中,基于商品属性的推荐就略显单一了,例如顾客购买了飞利浦的剃须刀,再推荐给顾客其他品牌的剃须刀,或推荐飞利浦的其他电子产品,效果不会很好。

在这类商品的各类繁多的复杂的购物场景中,新一代的基于顾客画像的推荐就取得了非常好的效果,再结合商品关联、商品基因,通常就比较精准了。

顾客画像提供了丰富的基础数据,需要通过四个引擎模块对这些顾客画像数据进行处理,这些引擎包括四个:

  • 1.场景引擎

场景引擎是根据在购物过程中的不同场景进行推荐,例如顾客刚进入网站、用户浏览商品详情页、购物车页面、订单结算页等场景,在这些场景里,顾客的诉求都是不一样的。 比如,顾客浏览商品详情页,此时顾客对这款商品是感兴趣的,可以做同类商品推荐、关联商品推荐等。当顾客把商品加入购物车,此时可以推荐给顾客,“买了这款商品的其他顾客 又买了什么”这样的商品推荐列表,引导顾客购买更多的商品。

  • 2.实时引擎

实时引擎是根据用户的浏览行为提供实时推荐建议,这对推荐系统的计算能力要求是非常高的,需要有实时计算框架来支持。

  • 3.上下引擎

上下文引擎是通过顾客的浏览轨迹,结合上下文内容,给顾客推荐与上下文相关的商品。

  • 4.规则引擎

规则引擎是通过人为配置一些规则,包括节日、季节、热点事件等社会化信息,给顾客推荐更应景的商品,例如在情人节来临之前,推荐鲜花、巧克力、浪漫餐厅等商品。

顾客画像

在上面的描述中,我们了解到了顾客画像的重要性,下图是顾客画像的组成,包括人口中统计学信息、兴趣图谱、消费类型、忠诚度、第三方网站的顾客画像。通过对这些信息的分析,个性化推荐引擎就能够做到比用户自己更了解自己。

顾客画像组成

根据顾客画像信息,给顾客“打标签”,每个顾客都有一系列的“标签”,个性化推荐引擎根据场景来选择哪些是主标签、哪些是辅助标签。

个性化推荐引擎的技术架构

个性化推荐引擎技术架构

从下往上看:

  • 最底层是规则数据层,是对规则数据的存储和加工,它通过数据总线,向上输出规则数据
  • 规则引擎层,包括用户资料、上下文等规则处理模块,向上输出适合场景的规则,将用户画像、商品关联、类目和商品属性数据输入到规则引擎中,得出了初步的推荐结果
  • 再经过场景引擎的规则过滤、去重、结果优化,把最终推荐结果展示给顾客
  • 最后根据顾客的点击情况,再反馈给推荐引擎,用于优化下一次的推荐结果

这就是一个机器学习的过程,实现了程序的自我进化,数据和规则积累得越多,个性化推荐引擎的计算结果就越接近顾客的真正需要。

 

上一章教程

架构思维成长系列教程(八)- 电商供应链系统架构设计

该系列教程

架构思维成长系列教程

我的专栏

 

 

至此,全部介绍就结束了

 

 

-------------------------------

-------------------------------

 

我的CSDN主页

关于我(个人域名,更多我的信息)

我的开源项目集Github

 

期望和大家一起学习,一起成长,共勉,O(∩_∩)O谢谢

欢迎交流问题,可加个人QQ 469580884,

或者,加我的群号 751925591,一起探讨交流问题

不讲虚的,只做实干家

Talk is cheap,show me the code

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页